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A Modified Independent Modal Space Control (MIMSC) method is
developed for designing active vibration control systems for large
flexible structures. The method accounts for the interaction between the
controlled and residual modes. It incorporates also optimal placement
procedures for selecting the optimal locations ofvthe actuators in the
structure in order to minimize the strﬁctural vibrations as well as the
actuation energy.

The MIMSC method relies on an important feature which is based on
"Time Sharing” of a small number of actuators, in the modal space, to
control effectively a large number of modes.

Numerical examples are presented to illustrate the applica£ionrof
the method to generic flexible systems.

The obtained results suggest the potential of the devised method in

designing efficient active control systems for large flexible structures.
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INTRODUCTION OF POOR QUALITY

Considerable attention has been directed recently towards the design
of active vibration control systems for large flexible structures. The
strategies employed in £he design of such control systems are based
primarily on the modal control methods whereby the flexible structures
are controlled by controlling their dominant modes of wvibrations.
Generally,.these modal control strategieshpelong to either the class of
the coupled methods [1-6] or to the class of the independent modal space
control (IMSC) method developed by Meirovitch and Coworkers [7-12]. In
the first class, the closed-loop equations of the system are coupled via
the feedback control such that the optimal computation of the feedback
gains requires the solution of a coupled matrix Riccati equation [3-6].
For large flexible structure the solution of the resulting Riccati
equation can pose serious difficulties which 1limit significantly the
applicability of the coupled modal control methods. The IMSC method
avoids, however, such limitaﬁions as the control 1laws are designed
completely, in the modal space maintaining the originally uncoupled open-
loop equations of the system as a set of independent second-order
equations even after including the modal feedback controllers. Meirocvitch
el al [7T-12] showea, under such conditions, that it is possible to
compute, in a close form, the optimal modal feedback gains., This feature
makes the IMSC method computationally attractive and lends it suitable
for controlling large structures.

However, the present study is initiated to modify the IMSC method to

account for the spillover from the controlled modes into the uncontrolled
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° modes due to the use of fewer actuators than the modeled modes. The IMSC
is also modified to incorporate an optimal placement procedure that will
enable the . selection of the optimal location of the actuators in the

® structure to ensure minimal amplitudes of oscillation and input control
energy. A third modification of the 1IMSC is to include an efficient
algorithm for time sharing a small number of actuators, in the modal

® space, to control a large number of modes of vibrat%ons.

With these modifications, the MIMSC method would provide more

effective and faster control of the vibration of flexible systems.

MODIFIED INDEPENDENT MODAL SPACE CONTROL METHOD
Modal Description of Flexible Systems
® Complex flexible systems can be modeled dynamically by a discrete

finite element model as follows
M§ + K& = F ‘ (1)

where .M is the overall mass matrix of the structure
K is the overall stiffness matrix of the structure
® § and § are the displacement and acceleration of the nodal points |
of the structure
F is the vector of @he external and control fqrces acting on
® the structure
' Equation (1) 1is put in the qual space by using the following

weighted modal transformation

§ = ¢U . (2)




where

Using such

(1) to

where

or

where

U is the modal coordinates of the system

¢ is the weighted modal
flexible system

transformation,

shape matrix

reduces

the coupled

p1(lcer)eeada(ln)
' pc{lcs1)eeeedec{ln)

Pes1{lcser)eePesr{ly)

. . . . . . . . .

dn(lcer)ees $n{lx) )

7 x

equation of

Fc¢

Fxr

of the eigenvectors of the

motion

(4)

(5)

on the controlled and residual modes

the following uncoupled form
.6 + AU =
A is a diagonal matrix of the eigenvalues of the system
f is the modal force matrix given by
f = ¢TF
[(f1 =[fc]= [91(l1)...iga(le)
fR . o . . . . . .
¢C(ll)uu-n¢c(lc)
der1(le)ebdcral(le)
_¢N(11)....¢N(1c)
fe,r are the modal forces
respectively.
Fc,r are the physical forces on

modes.

$i(l;).is the modal shape at mode i and location 1lj.

the

The above equation can be rewritten as ':

r‘f c"‘l

a

Bcec Benr Fc

Brc Bras Fr

controlled

and residual

(6)




® If only C modes are controlled with equal number of control forces Fec,

then Fr=0 and equation (6) reduces to

® fc¢ = BecFe | | (7)
and
fr 8 BreFe (8)
e Effect of Control Spillover
In the IMSC method, it is assumed that the control forces F¢ will
not contribute to the excitation of the residual higher order modes.
o Accordingly, it was assumed that there is no control spillover from the
controlled modes into the uncontrolled modes. Mathematically, this means
tha? the IMSC method assumes that fz=0. This of course can only be true
® if thebnumbgr of controlled modes is very large compared to the number of
residual modes or when the residual modes are at much higher frequency
band than the controlled modes. TIf these two conditions are not
® satisfied, then there will be considerable interaction between the
controlled and residual modes.
The MIMSC method considers such interaction by calculating the
o optimal modal control forces [fc] using the IMSC close form solution of
the Riccati Equation such that the control force fi of the it? mode, as
given by [7], is
®
fi = -(g1wiui + g20;)/R (9)
where R is a factor that weighs the importance of minimizing the
L

vibration with respect to the control forces.

W is the resonant frequency at the ith normal mode.




ui, u; are the modal displacement and velocity respectively.

€1, g2 are the modal position ahd velocity feedback gains given by

[7] as
g1 = -wiR + V(wiR)? + w;?R (10)
g2 =V2Rwi[-wiR +\[(wR)? +u;?R] + IR (11)

Accordingly, the disblacement ui; and velocity Ui at the it? mode can
be feedback and used along with equations (9), (10)#and (11) to determine
the modal control force fi.

Once these forces are calculated, equation (7) is solved to give the

physically applied control forces F¢ as follows
Fc¢ = Bge-t % -fc (12)

{ Then equation (8) 1is wused to calculate the modal forces fr that
would excite the residual modes which are generated by the spillover from
the controlled modes. Definitely these frx are not equal to zero as
originally assumed in the IMSC method.

Equations (15) can then be integrated with respect to the time to
determine the modal displacements (ui) and velocities (u;) which can, in
turn, be used again to compute the modal forces f and so on.

From the modal displacements and velocities, the physical state (§)
of the flexible system can be determined from equation (2). A
relationship can therefore be established between the physical state of

the system and the physical control forces F¢ applied to it.

Optimum Placement of Actuators

It is very important to point out here that the magnitude of the




modal forces fc¢ depends -primarily on the magnitude wi’s of the controlled
modes as well as the modal state variables u and U. On the other hand,
the magnitude of the actual physical control forces F¢ depends mainly,
for a given controlled mode, on the point of application of these forces
as defined by the matrix B¢c-!. Therefore, minimizing f¢ does not
necessarily means that F¢ will be minimum inspite of the fact that it is
. represented as a linear combination of f¢. This is simply because the
coefficients of the linear combination, which are elements of the Be¢c¢-!
matrix, depend on the placement strategy of the control forces F¢. One
could still find an optimally placed set of physical control forces F¢
such that the physical displacements and control forces would assume
minimum value.

This opt?mum placement of the physical control forces is an
important feature of the MIMSC method and will be demonstrated to be
essential part of the design of the active control system.

One should stress here also that if all the modes are controlled and
there is no residual modes then the conditions for minimizing f¢ will
make F¢ minimum as well. But, in real large structures this will be
unlikely to happen as the number of controlled modes is much smaller than
the number of modeled modes. Therefore, it is essential to augment the
IMSC method. with an optimal placement algorithm to guarantee efficient
design of the control system.

The optimum placement of the actuators is implemented through the
use of the Univariate Search method which varies the location of one

actuator at a time in order to

Minimize fksz + RFc¢2) dt (13)
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In other words, the optimal placement algorithm minimizes the
weighted sum of the amplitudes of +vibration and the generated controcl
forces. The weighing factor R is selected by the designer to emphasize
the importance of damping out the vibration over the expended control
energy {(when R<K1) or vice versa when R>>1. Equal importance of the two

parameters is achieved with R=1.

Time Sharing of Actuators in the Modal Space

The MIMSC method.incorporates also an extremely important feature
which is Dbased on the "TIME SHARING" of a small number of actuators in
the modal space to control large number of modes.

Two time sharing control strategies are‘ considered to generate the
modal control forces. The first is sequential and the second is based on
the modal energy.

In the sequential time sharing strategy, the control forces are
computed, at the first time interval, to control the first through the
Cth modes using C actuators. Then, at the second time interval, the
control signals are compufed so as to control the second through the
(C+1)td modes followed by commands to control the third through the
(C+2)th modes and so on until all the modeled modes are controlled in
this sequential fashion. Once all the modeled modes have received their
share from the confrol action the cycle is repeated again to effectively
damp out all the modes of vibration with few number of actuators. This
strategy will be shown to result in efficient control of the vibration of

large structures with relatively small number of actuators when the IMSC




fails to do so.

Better yet, control of the vibration can be achieved when the time
sharing istbased on the modal energy strategy particularly when the
number of controlled modes 1is very small compared +to the uncontrolled
modes.,

In this strategy, the modes of vibrations of the flexible system are
ranked according to their modal energy level. If C actuators are to be
used, then these actuators will be dedicated, at an& instant of time, tQ
control the C modes that have the highest modal energy. In this way, the
actuators will first attenuate the modal energy of the controlled modes.
During that time the control spillover will excite the uncontrolled
modes. When the modal energy of the uncontrolled modes starts exceeding
that of the controlled modes, the actuators are switched to control these
high energy modes in order to damp out their vibrations. Such time
sharing of the actuators between the modes will eventually bring all
these modes under control.

Figure (1) outlines a flowchart of the MIMSC method indicating the
main steps of optimal placement and time sharing of the actuators as
well as the consideration of the spillover between the controlled and

residual modes.

Application of MIMSC
The MIMSC method is utilized to design active vibration controllers
for flexible system when subjected to specific external loading and end
conditions. The resulting dynamic performance of these systems is

compared with their performance when controlled by the IMSC in order to




illustrate the merits and potential of the MIMSC method as a viable and
efficient method for actively controlling the vibration of large systems

with only few actuators.

NUMERICAL EXAMPLES
I. Multi Spring-Mass System

Figure (2) shows a multi sﬁring-mass system whioh is considered as a
simple example of a flexible system “to illustrate the intricacy of the
MIMSC method. The main dynamic characteristics of this system are given
in Table (1).

A. Control by two actuators with weighting factor R=1

(i) Using IMSC method

The three masses of the flexible system shown in Figure (g) are
displaced initialiy 1,-1 and 0 respectively from their equilibrium
positions and then left to vibrate under the action of an IMSC controller
with all the states are observed. The controller is designed to control
the first two modes of vibrations through the use of two actuators placed
at the first and second masses.

Figures (3-a) and (3-b) show the time history of the amplitudes of
vibration of the three masses and the associated control forces
respectively.

Figure (3-a) indicates that after an initial transition period of
about 4 seconds, a state of limit cycle 1is attained. During this state,
the first and the third masses undergo in-phase oscillations which are of
the same ampiitude and frequency. The second mass vibrates, however, in

the opposite direction at the same frequency but at a higher amplitude.
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Figure (2) - A spring-mass system

Table(1) - Dynamic characteristics of the spring-mass system

2.0000 -1.0000  0.0000
-1.0000 2.0000 -1.0000
0.0000 ~-1.0000  2.0000

1.0000 0.0000 0.0000
0.0000 1.0000 0.0000
0.0000 ° 0.0000 1.0000

0.5858 2.0000 3.4142

Eigenvectors
0.5000 -0.7071 0.5000
0.5000 0.7071 0.5000
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Relating such an observation ﬁo the dynamic characteristics of the -
system, given in Table (1), one finds that this 1limiting state
corresponds to the third normal mode of vibration. Accordingly, the IMSC
method has been successful in damping out, as intended, the first and
second modes of vibration during the first 4 seconds. The method fails,
however, to reduce the excessive amplitudes of vibration of the three
masses at the third mode of vibration. Such drayback can be related
directly to the fact that the two actuators have been utilized only to
eliminate the first two modes and once this goal has been achieved the
two actuators ceased to provide any control action as can be clearly seen
from Figure (3-b). In other words, the two actuators became completely
idle inspite of the fact that system is still vibrating. This observation
constitutes the main motivation for the concept bf time sharing the
actuators in the modal space which is the basic feature of the MIMSC
method.

(ii) Using MIMSC method

With thé time sharing concept, the MIMSC utilizes effectively the
installed actuators such that these actuators wiil not cease to operate
unless the vibrations of the system is completely damped out.
Accordingly, in the considered example, the two actuators are powered by
signais to eliminate all the three modes of the system and not only the
first two modes as in the IMSC. This is achieved by time sharing the two
actuators, among the three modes, either sequentially or baSed on the
maximum modal energy ranking.

Figures (4-a) and (4-b) show the time history of the amplitudes of

vibrations of the three masses and the associated control forces of the
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Figure (3) - Time history of amplitude of vibration and control forces
for spring-mass system using IMSC method with two

actuators (R=1)
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Figure (4) - Time history of amplitude of vibration and control forces
for spring-mass system using MIMSC with sequential
time sharing of two actuators (R=1)
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two actuators respectively when the MIMSC utilizes a sequential time
sharing strategy.

Figure (4-a) indicates that sharing the small number of actuators
among a larger.number of modes has been effective in damping out the
amplitudes of vibration of all the modes. Such a process 1is done by
making these actuators work as long as there is vibration to be damped
out as can be seen from Figure (4¥b). This 1is unlike the same two
actuators which have been only partially utilized by the IMSC method as
indicated in Figure (3-b).

When the time sharing strategy is based on dedicating the two
actuators to control the two modes that have the highest modal energy
(U2+ﬁz), at any instant of time, then the resulting time history of the
amplitudes of vibrations of three masses and the aséociated.coqtrol
forces are as shown in Figures (5-a) and (5-b) respectively.

Figure (5-a) demonstrates the effectiveness of the scheme of time
sharing based on the ranking of the modal energy in suppressing the
vibration of the three-mass system in a fashion which is more efficient
than the sequential scheme and definitely than the IMSC method.

A Dbetter quantitative comparison between the two schemes can be
established based on the displacement, control force, and control energy
indices Ua, Uc and Ug which are given by

t=t*

N
Ua = i 2XAt (11)
Lo ik "

x

t=t N
Ue = : F;2%xAt (15)
tg£ iéa
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‘ t=t* N :
Ueg = ¢ Si¥F | AL (16)
o b

where N is the number of d.o.f. of system
At is the integration time increment
t¥ is the maximum time limit of integration
Table (2) summarizes the results of such a comparison.
Table (2) - Effect of thé strategy of time sharing tﬁo actuators on
displacement, control force and control energy indices for
spring-mass system with R=1.

Strategy - Displacement Control forces Control energy
: index - 1ndex index

Sequential H : 2.44 32.36 7.14

Modal energy ' 2.15 13.99 3.04

B. Control by two actuators with weighting factor R;IOO

The effect of increasing the weighting factor R to 100 on the time
history of the amplitudes of vibration of the three masses and the
associated control forces is shown in Figures (6-a) and (G—b)
respectively. The figures emphasis the same trends observed for R=1
however and more importantly show that the MIMSC method is still very
effective in damping out quickly‘the vibrations of the three masses but
with control forces of much smaller magnitudes. For example, when R=100
the control forces required with sequential and modal energy time sharing
assﬁme maximum values of 0.460 and 0.524 respectively. These magnitudes

are at least 6 times lower than those computed for R=1 as can be seen in
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) Figures (4-b) and (5-b).
Table (3) lists the effect of increasing R to 100 on the
displacement, control force and control energy indices when the Lime
) sharing is based on sequential and modal energy strategies.
The table indicate; a considerable reduction in the control force

and energy indices that are more dominant than the increase in the

o displacement index.
Table (3) - Effect of the strategy of time sharing two actuators on
@ displacement, control force and control energy indices for

spring-mass system with R=100.

o ————— — ————— o — —— ————————— - —— - o — = . - - e - - A A i —— - = = = ————— ——

Strategy ' Displacement ) Control forces Control energy
o » ' index index index
Sequential !  8.40  1.960 5.0
Modal energy H 5,03 1.462 4.03
@
In the case of the IMSC method, changing R did not influence at all
the amplitudes of vibration at steady state but it did, however, prolong
° the duration of the transition time needed to eliminated the first two
modes.
Accordingly, with opﬁimally selected -weighting factor R the MIMSC
® method can effectively suppress the vibration without the need for
excessively large control forces.
C. Control by one actuator with weighting factor R=100
° To demonstrate more dramatically the effectiveness of the MIMSC in

controlling-the vibration of large number of modes with a small number of

actuators a single actuator, placed at mass 1, is used to actively




control the three spring-mass system.

Figures (7—a). and (7-b) show the time history of the amplitudes of
vibrations and the associated control forces respectively as obtained by
the IMSC and MIMSC methods.

Again the figures emphasis the potential of the MIMSC particularly
with its modal energy time sharing strétegy as a viable active control.

Table (4) summarizes the results obtained from the analysis of these

figures.

Table (4) - Effect of the strategy of time sharing one actuator on
displacement, control force and control energy indices for
spring-mass system with R=100.

Strategy H Displacement Control forces Control energy
H index index index

Sequential : 14,129 2.752 1.753

Modal energy ' 11.833 2.960 1.239

II. Cantilever Beam
A. The beam system
Figure (8) shows a steel cantilever beam modeled by a 3-finite
element modal that has 3 d.o.f. of linear translation and 3 d.o.f. of
angular rotations with node 1 fixed. The beam 1is 0.15m long and has
rectangular cross section which is 0.0125m wide and 0.0021m thick. For
?his beam, the normal modes pf vibrations are found to be 73, 382.6,
937.7, 1582.8, 2134.1 and 2519.0 Hz resﬁectively.

B. Performance with one actuator

L et o K S e e b S T+ St e A R e Sttt s B e Y vt v rd AR e o 54 4 g a8 Pk A W ek e Ml e e e e A e TN BB o et 44 e e e s a4
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In this example, the beam is assumed to be controlled by one linear
actuator placed at its free end, i.e. at node 4. The beam is subjected to
an impulsive load of magnitude 1.0N and duration of 0.1lms.

The IMSC and the MIMSC, with its two time sharing strategies, are
utilized to design the active controller of the beam. These methods are
compared as far as their effectiveness in damping out the vibration of
the beam as shown in Figure (9).

The figure indicates that the IMSC is again successful in
suppressing the lowest mode of vibration but all the hiéher modes remain
totally undamped. On the contrary, the MIMSC with the modal energy time
sharing exhibits complete control -over all the modes and effective
damping is demonstrated. Also the maximum amplitude of oscillation of the
beam is observed to be, in this case, about 10.7% lower than that
obtained with the IMSC method.

Considering, however, the MIMSC method with sequential time sharing
it can be seen that this strategy is not as effective as the modal energy
strategy or the IMSC method. The reasons are obvious and it is important
to cite them. First, the beam being a six-mode system controlled by one
actuator, then, it is essential to wutilize this actuator in the best
possible way. Dedicating it to the first mode, as in the IMSC, is found
adequate to damp out large amplitude oscillations but inadequate to take
care of +the high frequency jitters. Using this actuator to control any
mode in any sequence without due consideration to its contributioh»to the
system’s vibration .or energy is definitely a reason behind the
ineffectiveness of the sequential time sharing strategy. But, once the

actuator is set to control always the mode that has the highest modal
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Figure (9) - Time history of the amplitudes of transverse vibration
of cantilever beam with one actuator and R=100
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energy then the time sharing is efficient and fast. The second reason for
the inadequacy of the séquential time sharing in the case of the beam,
unlike the three spring-mass system, is that as the actuator is
sequenﬁial to control the high frequency modes, which may have low energy
level, it leaves the high energy modes uncontrolled. Therefore, the more
the number of modes between which an actuator is shared, the longer it
will take to go through them all and come back_ to control the low
frequency modes that may still have the high energy. The delay period in
controlling the high energy modes increase as the number of modes is
increased and accordingly this will prolong the time needed to actively
bring the structure under control.

Quantitatively, the comparison Dbetween the two time sharing

strategies is given in Table (5).

Table (5) - Effect of the strategy of time sharing one actuator on
displacement, control force and control energy indices for

cantilever beam with R=100.

Strategy : Displacement Control forces Control energy
: index (x10°9) index (x105 ) index (x1068)

Sequential H 5.919 0.9081 ' 3.205
Modal energy :

C. Optimum placement of one actuator
The MIMSC method is Qsed to optimally place a single actuator in the
considered beam system. Table (6) summarizes the effect of placing the

actuator on the displacement, control force and control energy indices.




Table (6) - Effect of actuator location on displécement, control force

and control energy indices for cantilever beam.

Actuator i Actuator i Displacement Control force Control energy
at node i type i index (x10°9) index (x105) index (x10¢6)
2 H linear H 1.553 18.91400. 3.169
: rotary : 1.555 0.02800 6.305
3 H linear : 1.579 1.13700 1.495
! rotary : 1.242 0.00100 1.306
4 H linear ' 1.243 2.90000 ' 1.596
H rotary = ‘ 1.324 0.00054 1.461

The obtained results.suggest that the actuator should be of the
rotary type and be placed at node 3. At this location the displacement as
well as the control energy indices are minimal. The table suggests that
the location and type of ‘actuator have a considerable effect on the

system performance unlike what is stated by the IMSC method.

CONCLUSIONS

This report has presented a modified algorithm of the Independent
Modal Space Control method where control spillover as well as optimum
placement and time sharing of actuators have been considered.

The considered numericél examples indicate the importance of
including such modifications to the IMSC.

It is shown that time sharing a small number of actuators between a
large number of modes can be effective in .suppressing the wvibration if
‘the actuators are dedicated to control the modes that have the highest

modal energy at any particular instant.
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The presented algorithm has the potential of being a viable means

controlling large flexible structures.
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